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ABSTRACT: Accurate prediction of photovoltaic energy remains a challenge, as PV production is dependent on 
fluctuating weather conditions, such as solar irradiance which relies on cloudy conditions. In this context, our work is 
based on a specific “All Sky Imager” (ASI) , integrating “fish-eye” concave lenses with a 180° field of view. 
This paper presents a novel approach of cloud segmentation using ASI to improve - PV production forecasting. First, 
we improve the identification of various components in the images (clouds, sun, noise, etc.). Then, we study the very 
short-term impact of clouds through a sky images segmentation and tracking processing. Finally, we correlate the sky-
level segmented image to fluctuations in the actual on-site solar irradiance measurements. 
The results show that the segmentation is efficient in clear and overcast sky conditions.  However, high precision 
irradiance accuracy in partially cloudy sky conditions is difficult to obtain due to the chaotic impact of the circumsolar 
region and different cloud opacities. 
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1 INTRODUCTION 
 

Steadysun [1] develops and operates an advanced solar 
power production forecasting technology at intra-hour 
time horizon named Steady-Eye. This unique application 
delivers one of the most accurate forecasting solutions 
available on the market to anticipate solar energy 
variability. This work comes from a R&D cooperation 
within CEA-INES [2] to meet the needs of Steadysun to 
improve very short-term forecasting of PV production 
technology. 

In this paper, we propose a segmentation algorithm to 
detect clouds on the images produced by Steadysun’s ASI. 
The algorithm is able to filter noise, flares around the sun. 
It also classifies clouds in two types: opaque and thin. 
These results will be used later to predict solar irradiance 
over a ten-minute to half-hour horizon by Steadysun. 
 
2 METHODOLOGY 
 
2.1 Camera calibration 

The camera model is obtained beforehand with 
standard checkerboard based calibration method. This step 
is crucial as the camera model parameters are very 
important to understand the space as it is perceived by the 
camera then, transpose it (un-distortion) into the real 
world.  
 

 
Figure 1: Checkerboard method for camera calibration 

 
Scaramuzza et al. [3] toolbox is well known as a 

camera calibration tool. This toolbox uses black and white 
equal-square checkerboard images placed at different 
positions and tilt angles around the camera (figure 1). 
Using the known dimensions of the black and white square 
checkerboard pattern, the model estimates the desired 
parameters of the camera model. 

In this paper, we propose a different approach than the 

one mentioned previously avoiding extra image 
acquisition. Indeed, this approach is based on the sun 
positon to estimate the camera model parameters as 
mentioned in [4]. As a matter of fact, the sun position 
Xs=(xs,ys) (in pixels) is tracked on each image. In 
addition, the angular solar position Φs=(θs,ϕs) is estimated 
using the NREL solar position algorithm [5]. The NREL 
algorithm takes the terrestrial coordinates (latitude, 
longitude, altitude) and time of the observation location as 
inputs, and outputs the solar zenith angle θs and the solar 
azimuth angle ϕs. Then, a linear transfer function between 
the solar coordinates Xs=(xs, ys) and the angular solar 
coordinates Φs=(θs, ϕs) is calculated. In general, these 
parameters must be calculated for the camera at the 
calibration step and stored as initialization to the model to 
use them for later calculations. 

2.2 Fish-eye lens model 
Sky images in our model are acquired by a whole-sky 

imager installed locally at the research sites considered. 
The camera is located 200m from the solar irradiation 
measuring equipment. The imaging system consists of a 
high-resolution camera (3-megapixel RGB CMOS sensor) 
with an equisolid angle projection fish-eye lens (1.27mm 
focal length) attached to it, which provides a 187° 
Horizontal Field Of View (HFOV) and 168 ° Vertical  
Field Of View (VFOV). The optical system is enclosed in 
a waterproof box with a plastic dome above the lens. The 
box protects the camera from temperature, humidity, 
variations in wind and other environmental factors. Images 
are acquired at a resolution of (2048 x 1536) pixels and are 
saved at a sampling rate of one frame per minute.  

Optical systems introduce some unwanted effects on 
the image, rendering the perception of the environment 
inaccurate. Generally, in most cameras, straight lines in the 
real world are mapped as straight lines in the image 
captured. However, the use of the fisheye lens introduces 
a radial distortion effect. This phenomenon is noticeable 
in the border region of the image, where the levels 
distortion level is extremely noticeable. This radial 
distortion causes pixels on the image plane to move from 
their ideal position in the standard camera model, along a 
radial axis in the fisheye image plane. 



 
Figure 2: Geometric representation of the fish-eye model 

used and projection of the dome image on the plan 

The model we used to simulate the behavior of the 
fisheye lens as a function of the focal length f of the camera 
and the angle θ, inspired by [10], is given by the following 
equation: 

𝑟𝑑 = 𝑘1 ∗ sin(θ 2⁄ ) + 𝑘2   (1) 

The relationship between the radial distance rd from 
the center of the image and the angle θ made by a pixel on 
the dome with respect to the vertical axes allows us to 
project a captured image onto the dome [6]. The 
parameters k1 and k2 of equation (1) were estimated using 
a linear regression in the practical case by calculating the 
apparent position of the sun on the test images using the 
polar coordinates Xs,p = (rs, ϕs).  

The last step in the calibration is to find the orientation 
of the camera relative to the north-south axis of the Earth. 
The parameters we considered are:  

 α : camera offset from the North-South axis. 
 γ : azimuth angle between a point on the image 

and the North-South axis. 
By calculating the coordinates (ϕs, γs) of the sun, we 

will use these to find the offset of the North-South axis, 
through another linear regression of equation (2).  

γ =  α −  ϕ   (2) 

2.3 Clear Sky Library (CSL) 
The binary segmentation is based on Clear Sky Library 

(CSL) similar to the approach described in [7, 8]. The CSL 
is a database that provides a reference with respect to the 
RBR (Red to Blue ratio R / B) values of the RGB image 
for each pixel according to the zenith and azimuth angle of 
the image calculated from historical images in clear sky 
conditions.  

 The RBR level is higher in cloudy regions in the 
image, as well as in the solar and circumsolar regions. The 
RBR is the highest near the sun and decreases further away 
from the center of the sun. The RBR also increases near 
the horizon for large values of the zenith angle due to 
optical distortion and higher aerosol concentrations 
towards the horizon. The segmentation results based on the 
CSL and Otsu thresholding ,which will describe in details 
in the next section, are presented in figure 3. 

 
Figure 3: Segmentation results for days with clear and 

cloudy skies (INES) 

For the construction of the CSL, a polynomial model 
using the RBR values of the clear sky images is estimated. 
The second degree polynomial model (9 coefficients) is 
calculated through the RBR image according to the zenith 
angle (in pixels) and the azimuth angle of the sun (in 
pixels) according to the following model: 

𝑅𝐵𝑅( 𝜃𝑝 , 𝜓𝑝𝑠) =  ∑ ∑ 𝑝𝑖𝑗 ∗  𝜃 𝑝
𝑖 ∗ 𝜓 𝑝𝑠

𝑗
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         (3)  

For each clear sky image, the coefficients of the 
polynomial model (equation 3) are calculated and 
stored in the CSL with the corresponding zenith, 
azimuth angles and date/time of day. The 
representation of the angles θp, ψps and θz is described 
in figure 4 with θz the solar zenith angle, fixed for each 
image interpolation by the polynomial model. 

 
Figure 4: θp, ψps and θz angles for the CSL model 
 

3 IMAGE SEGMENTATION 

This section will be reserved for the describing of the 
segmentation procedure for cloud detecting and the 
different techniques implemented ensure a good 
segmentation quality. 

3.1 Image filtering 
Before we start the segmentation process, we filter the 

dataset to remove outliers. Some examples of outliers are 
presented in figure 5. 

 
Figure 5: Examples of anomalies in the images (insects, 

scratches, birds, flare) 

The images with abnormalities are removed from the 
dataset through visual inspection or treated with specific 
algorithms, which will be described later on. Otherwise, 
they will affect the final cloud-detection decision image. 

3.2 Image cleaning 
The surface of the dome during real operational 

conditions is exposed to dirt or scratches which will result 
in additional scattering of light with specific patterns that 
change with the position of the sun and the time of day. 
Also, the reflections from the sun hitting the image sensor 
which become visible at high solar altitudes (for low 
values the zenith angle or the direct beam is almost 
orthogonal to the image plane) result in a red circular spot 
in the camera dome (flare). The impacts of this stray light 
were qualitatively assessed by visually inspecting clear 
sky images such as those in Figure 6. 

 



 
Figure 6: Raw images artefacts and flares 

These artefacts have consequences later on in the CSL 
construction and image segmentation. In fact, in the case 
of CSL, these spots present false high RBR values which 
biases the estimation of the polynomial model of the CSL. 
In addition, if left untreated, these spots will result in false 
detections later in the segmented image or be interpreted 
as false clouds. 

 
Figure 7: Flares and artefacts elimination 

To solve this problem, we apply a Gaussian filter with 
parameters μ and σ in the specific regions where these 
artefacts and flares exist. An illustration of the resulting 
image after treatment is presented in figure 7. 

3.3 Segmentation parameters 
As previously exposed, the algorithm to detect clouds 

is based on the RBR. There are 4 cases where the detection 
procedure applied is different. Each of these cases is 
determined from the state of the sun (hidden, clear) and the 
circumsolar region (hidden, clear). Two different 
indicators are calculated, the Sun Disk Factor SDF and the 
Circumsolar Factor CF. 

The circumsolar factor is defined as the ratio of clouds 
detected in the circumsolar zone compared to the total 
surface of the considered circumsolar region. The method 
used for detecting clouds in this region is based on the 
RBR of the considered image. According to the values of 
CF, we distinguish two cases: 

 

For the SDF, we calculate the area of the saturated 
region of the image (Mean(RGB) > 240) in the solar 
perimeter (a region of radius 300 pixels for example). 
Then, we divide this area by a disk surface of radius 50 
pixels (fixed sun radius). This will give us a variable solar 
ratio factor SDF that we will later use to determine if the 
sun is occulted. 

 

Considering a fixed sun radius simplifies the problem 
as the real sun radius in the image does not vary much in 
the considered region of interest of zenith angle [-85°,85°]. 
A similar approach was proposed in [8] were this 
hypothesis was tested and validated. 

 
3.4 Segmentation steps 

At this stage, we can now start the process of cloud 
detection. At first, we consider the RGB image in question 
(Figure 8-a). We start by eliminating the artefacts and 
flares from the image as mentioned in (4.1) and (4.2). After 
this step, considering the position of the sun in the image, 
we calculate the corresponding zenith and azimuth angles. 
Then, we look in the CSL data base (which we prepared 
beforehand) for a similar day (or closest) in terms of zenith 
and azimuth angles. The RBR image from the database for 
the corresponding values of zenith and azimuth is then 
generated using formula (3) and the polynomial 
coefficients found in the CSL (Figure 8-c). After 
subtracting the RBR of the CSL image (Figure 8-c) from 
the RBR of the raw image (Figure 8-b), we obtain a 
difference image of the RBR values (figure 8-d). 

 
Figure 8: Cloud segmentation steps with CSL 

By comparing the pixels of the difference image 
(figure 8-d) to an Otsu threshold calculated through the 
whole difference image, the final resulting image which 
indicates the presence of clouds or not, is obtained. If the 
pixel values in the difference image is above the Otsu 
threshold, the method classifies these pixels as cloudy ones 
which indicates the presence of clouds in that region. 
Otherwise, the pixels are bright (no clouds). 

 
Figure 9: Cloud Detection with fixed global 

threshold 

However, inspired by [8], we introduce a subtle 
correction in the form of an exponential Otsu threshold to 
improve detection and avoid misclassification especially 
in the closest vicinity of the sun (circumsolar region), 
which affects the very short-term solar forecasting in 
general and specifically in our model. The exponential 
Otsu threshold proposed in [8] is in the form: 

   

 
 

 



𝛿𝑑𝑖𝑓𝑓(𝜓𝑝𝑠) =  𝛿𝑑𝑖𝑓𝑓,0 (1 + exp (
−𝜓𝑝𝑠

200
))   (4) 

With ψps in degrees, δdiff,0 is the Otsu threshold of the 
difference image and 200° is a scaling factor, which has 
been fixed through manually testing a set of batch images. 
Using the same logic as before, we then compare the 
calculated δdiff with the the difference image by classifying 
the pixel as cloudy if the pixel value is above δdiff and clear 
otherwise. However, we have exploited this result but with 
some modifications and improvements described in the 
following table: 

Table 1:  Different threshold settings for cloud 
detection 

These settings are site independent and are the same 
for all studied sites. 

4 RESULTS AND VALIDATION WITH FIELDS 
TESTS 

4.1 Cloud detection validation 
The first validation step is visual. In fact, we inspect 

and compare the segmented images with the real images 
of the camera in order to check the quality of cloud 
detection especially in the circumsolar region. This first 
validation is carried out on the entire database available on 
the various studied sites. 

  Second, once the clouds are detected, we verify 
whether the sky situation described by the mask generated 
by our model is in accordance with the irradiance 
measured on the ground. In other to confirm the matching 
of generated image and the actual GHI measurements of 
the site, we apply a certain logic described by the 
following table: 

Table 2. Comparison logic of the GHI measurements to 
the model 

𝐺𝑚: 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  −  𝐺𝑐𝑠 ∶ 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

In the case of occulted sun, the measured value should 
be lower than the theoretical value of the clear sky model. 
Also, if the sun is clear, the location of the circumsolar 
zone determines whether the irradiance reaching the 
sensor is transmitted or diffused. In the case of 
transmission, the measured irradiance is equal to that of 
clear sky conditions, otherwise in the case of scattering, 
the measured irradiance is much higher. 

  To validate these hypotheses, we compare in another 
step the values of irradiance measured on site to those of 
clear sky irradiance from a model, which generates these 
values taking into account the longitude, altitude and 
latitude of the site [9]. The comparison is made according 

to the formula: 

𝐷𝑖𝑓𝑓𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒(%) =  
Irradiancemeasured −  Irradianceclear sky

Irradianceclear sky
     (5) 

After that: 

 

This logic will be used subsequently for the validation 
of the segmentation results. 

4.2  Results for cloudy and clear sky days 
 The validation of the segmentation quality was first 

done visually (Figure 12) and on the entire database of test 
sites. 

 
Figure 12: Segmentation results for overcast and clear 

sky days. 

The model shows good performance for days with 
overcast and clear sky. First, by eliminating flares and 
artefacts around the sun thoroughly, secondly in terms of 
the deployment of the CSL and its usefulness for days with 
clear sky conditions and thirdly, the effectiveness of the 
fixed threshold for overcast skies (Table 1 - Case 1) and 
the adaptive threshold (Table 1 - Case 4) especially in the 
circumsolar region which mainly impacts the GHI forecast 
in the very short term. 

For the GHI validation of our cloud detection method, 
we only have GHI measurements for the INES site. The 
GHI validation results are summarized in the following 
table: 

Table 3: GHI validation results for clear and overcast 
days 

4.3  Results for days with partly cloudy skies 
The proposed model is more beneficial to be applied 

in partially cloudy conditions. In fact, the variations of 
measured GHI are very fluctuating and thus intriguing in 
this case. This underlines the importance following the 
evolution of clouds especially in the circumsolar region, to 
better understand and correlate the impact of clouds on 
very short-term GHI fluctuations. A better understanding 
of this phenomenon will subsequently make it possible to 
provide a better, reliable forecast of solar irradiance. 

Case Sun Circumsolar CSL Threshold Expression 
1 Occluded Occluded No Fixed threshold Threshold = 0.7 

2 Clear Occluded yes δdiff,0 = ThreshOtsu 𝛿𝑑𝑖𝑓𝑓(𝜓𝑝𝑠) =  𝛿𝑑𝑖𝑓𝑓,0(1 − 𝛿𝑑𝑖𝑓𝑓,0 ∗ exp (
−𝜓𝑝𝑠

200
)) 

3 Occluded Clear yes δdiff,0 = ThreshOtsu 𝛿𝑑𝑖𝑓𝑓(𝜓𝑝𝑠) =  𝛿𝑑𝑖𝑓𝑓,0(1 + exp (
−𝜓𝑝𝑠

200
)) 

4 Clear Clear yes δdiff,0  = 0.17 𝛿𝑑𝑖𝑓𝑓(𝜓𝑝𝑠) =  𝛿𝑑𝑖𝑓𝑓,0(1 + 0.5 ∗ exp (
−𝜓𝑝𝑠

200
)) 

Case Sun Circumsolar Condition Solar 
irradiance 

1 Occulted Occulted 𝐺𝑚 ≤ 𝐺𝑐𝑠  Occulted 
2 Clear Occulted 𝐺𝑚 > 𝐺𝑐𝑠 Diffused 
3 Occulted Clear 𝐺𝑚 < 𝐺𝑐𝑠 Occulted 
4 Clear Clear 𝐺𝑚 = 𝐺𝑐𝑠 Transmitted 

Site Data available Clear 
sky Overcast Precision [%] 

INES 2018 (20 days 
over 12 months) 2 days 13 days Clear sky 87 - 98 

Overcast 98 - 100 



Figure 13: Segmentation results for a partly cloudy sky 
(INES) 

The results for the partly cloudy data set are displayed 
in table 4, as well as for the visual validation part in Figure 
13. 

Table 4. GHI validation results for partially cloudy days 

The model accuracy in partially cloudy days (51% - 
71%) versus clear and overcast ones ( (87% - 98%) and 
(98% -100%) respectively ) illustrates the variability of 
cloud impact on GHI measurements and the difficulty to 
pinpoint with precision it’s impact on all the data used, in 
the case of partially cloudy days. This large variability 
leads to greater uncertainties later on, over the assessments 
made on the future value of GHI. This is due to the 
different types of clouds (opaque, thin, permeable ... etc.) 
as we have concluded.  

The validation using in-site irradiance measurements 
shows expectable results for clear sky and cloudy 
conditions. However, the segmentation should be 
improved specially for partially cloudy days, which will 
be the focus of our future work. 

4 CONCLUSION 

In this paper, we have presented method for cloud 
detection and segmentation using preexisting techniques, 
which we have adapted locally for our study site and 
improved, based on data driven approaches.  

The validation of our method shows good results for 
clear sky and overcast days. For partially cloudy sky 
conditions, there is still some improvements to work on to 
distinguish between different types and shapes of clouds. 
Indeed, based on the results obtained on partially cloudy 
days, we noticed that the opacity of the clouds approaching 
the circumsolar region and the sun in particular, influence 
the transmissibility of solar radiation to different degrees. 
The impact is measurable as soon as the clouds cross the 
circumsolar region, where measurements start to become 
chaotic. This is why a classification of the clouds 
according to the opacity level is essential to more precisely 
distinguish the transmissivity of clouds and subsequently, 
to increase the precision of the model.  

One approach is a cloud classification procedure based 
on sky images histogram analysis. The impact of cloud 
opacity on irradiance transmissivity will be developed in 
future works. Another perspective is to distinguish 
between different types of clouds by a classification 
procedure based on color (RGB) and texture (gradient for 

example). This step should help identifying the impact of 
clouds on solar irradiance and subsequently, improve the 
forecast. 

Finally, the main finding is that there is no "one best 
model" for predicting solar irradiance, but some models 
give better results than others do in specific sky and 
meteorological conditions. It would be interesting to find 
a way to hybridize the different models we have according 
to the forecast horizon, different site conditions and optical 
systems in order to try to keep the forecast error as low as 
possible. 
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